Spatially Coherent 3D Distributions of HI and CO in the Milky Way

Talk by Laurin Söding, Philipp Mertsch and Vo Hong Minh Phan

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University

Karlsruhe, 04.03.2024

The Diffuse (Galactic) Gamma-Ray Sky

The Diffuse (Galactic) Gamma-Ray Sky

The Diffuse (Galactic) Gamma-Ray Sky

The Idea: Reconstructing the 3D Gas Distributions

- ✤ Gas on (circular) paths around the Galactic Centre
- Narrow emission lines become Doppler-shifted

The Idea: Reconstructing the 3D Gas Distributions

- ✤ Gas on (circular) paths around the Galactic Centre
- Narrow emission lines become Doppler-shifted
- 1) Match Doppler-shift \rightarrow velocity
- 2) Match velocity \rightarrow distance

The Idea: Reconstructing the 3D Gas Distributions

- ✤ Gas on (circular) paths around the Galactic Centre
- Narrow emission lines become Doppler-shifted
- 1) Match Doppler-shift \rightarrow velocity
- 2) Match velocity \rightarrow distance

Problems:

- I. Velocity \rightarrow distance is ambiguous!
- II. True orbits are unknown! ~5-10% deviations!

Bayes' law:
$$P(\rho_{\text{HI}}, \rho_{\text{CO}}, \mathbf{v}, ... | d) = \frac{P(d | \rho_{\text{HI}}, \rho_{\text{CO}}, \mathbf{v}, ...) \cdot P(\rho_{\text{HI}}, \rho_{\text{CO}}, \mathbf{v}, ...)}{P(d)}$$

Bayes' law:
$$P(\rho_{\text{HI}}, \rho_{\text{CO}}, v, ... | d) = \frac{P(d | \rho_{\text{HI}}, \rho_{\text{CO}}, v, ...) \cdot P(\rho_{\text{HI}}, \rho_{\text{CO}}, v, ...)}{P(d)}$$

We reconstruct a set of samples $\{\rho_{\text{HI},i}, \rho_{\text{CO},i}, v_i\}_{i=1...N}$ that approximate the posterior distribution

For more detail: arXiv:1901.11033

A Model for the Gas Distributions

✤ Key requirement: Spatial coherence

- ↔ Homogeneous (log)normal Gaussian random fields $g(\vec{x})$:
 - ✤ Generated e.g. by correlating random numbers

Superimposed:

- 1) Radial profile: Milky Way is (roughly) axisymmetric
- 2) Z-profile: Milky Way is disk-shaped

A Model for the Gas Distributions

A Model for the Gas Distributions

A Model for the Line-Of-Sight Velocity

A Model for the Line-Of-Sight Velocity

25

(Ou et al (2023))

30

20

10

Ũ

5

15

R [kpc]

A Model for the Line-Of-Sight Velocity

The Emission Line Spectra: HI and CO

Calculate synthetic data as line-of-sight integral: $dI_v = -I_v \kappa_v ds + j_v ds$

The Emission Line Spectra: HI and CO

The Emission Line Spectra: HI and CO

Results: Top-down view (global)

Laurin Söding, RWTH Aachen, Spatially Coherent 3D Distributions of HI and CO in the Milky Way

Results: Top-down view (global)

Results: Top-down view (global)

Laurin Söding, RWTH Aachen, Spatially Coherent 3D Distributions of HI and CO in the Milky Way

Results: Top-down view (local)

Results: A comparison to dust (local)

Results: Sky-view Proton Column Density

Results: Sky-view Proton Column Density

Results: Sky-view Proton Column Density

Conclusions

Coherent picture of Milky Way gas distribution

Uncertainty estimation possible with multiple samples

High resolution near-by

Publication in preparation \rightarrow results available soon!

Backup 1.1: Metric Gaussian Variational Inference

Bayes' theorem:

- 1. Guess a starting point for the mean
- 2. Draw samples from the approximated posterior distribution at the mean
- **3. Estimate "distance"** to true posterior via Kullback-Leibler-Divergence
- 4. Update mean estimation
- 5. Repeat

Backup 1.2: MGVI-Sampling: Inverse Fisher Metric as Covariance

How to sample from the (approximated) Posterior? → Approximate Covariance by inverse **Fisher metric**

With Fisher metric of likelihood $I_d(\xi) = \left\langle \frac{\partial \mathcal{H}(d|\xi)}{\partial \xi} \frac{\partial \mathcal{H}(d|\xi)}{\partial \xi^{\dagger}} \right\rangle_{\mathcal{P}(d|\xi)}$

Application of (inverse of) this **scales linearly with model parameters** due to implicit operators. There is no need to store the full covariance matrix at any point!

Backup 1.3: MGVI: Optimising the Mean

How to optimise the estimate of the mean?

Evaluate Kullback-Leibler-Divergence stochastically:

$$\mathcal{D}_{\mathrm{KL}}\left(\mathcal{G}(\xi|\bar{\xi},\Xi(\hat{\xi}))||\mathcal{P}(\xi|d)\right) \widehat{=} \langle \mathcal{H}(d,\xi) \rangle_{\mathcal{G}(\xi|\bar{\xi},\Xi(\hat{\xi}))}$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{H}(d,\bar{\xi}+\Delta\xi_*^i)$$

 $\begin{array}{c} \mathcal{G}(\xi|\bar{\xi},\Xi)\\ \hline \\ \text{Infer these} \\ \hline \\ \text{Approximate those} \\ \end{array}$

gradients via autodifferentiation

And minimise w.r.t the mean parameters

Backup 2: Verification of the Method

20 10 y [kpc] -10-20 10 20 -20 -10 0 x [kpc]

Ground truth

