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The Diffuse (Galactic) Gamma-Ray Sky

(Fermi LAT Collaboration)

Foreground for DM 
searches

Foreground for γ-ray
astronomy

Probe for cosmic rays



Laurin Söding, RWTH Aachen, Spatially Coherent 3D 
Distributions of HI and CO in the Milky Way

3

The Diffuse (Galactic) Gamma-Ray Sky

(Fermi LAT Collaboration)

Cosmic rays Gases Magnetic fields Interstellar radiation fields
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The Diffuse (Galactic) Gamma-Ray Sky

(Fermi LAT Collaboration)

Cosmic rays Gases Magnetic fields Interstellar radiation fields

Neutral Hydrogen (HI)

Molecular Hydrogen (CO→H2)

Ionised Hydrogen (HII)
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The Idea: Reconstructing the 3D Gas Distributions

❖ Gas on (circular) paths around the Galactic Centre
❖ Narrow emission lines become Doppler-shifted
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The Idea: Reconstructing the 3D Gas Distributions

❖ Gas on (circular) paths around the Galactic Centre
❖ Narrow emission lines become Doppler-shifted

1) Match Doppler-shift → velocity
2) Match velocity→ distance
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The Idea: Reconstructing the 3D Gas Distributions

❖ Gas on (circular) paths around the Galactic Centre
❖ Narrow emission lines become Doppler-shifted

1) Match Doppler-shift → velocity
2) Match velocity→ distance

Problems:
I. Velocity → distance is ambiguous!
II. True orbits are unknown! ⁓5-10% deviations!
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Line SpectraVelocity Model3D Gas Distributions
Radiation Transport

Basic Idea: Bayesian Inference



Laurin Söding, RWTH Aachen, Spatially Coherent 3D 
Distributions of HI and CO in the Milky Way

9

Line SpectraVelocity Model3D Gas Distributions
Radiation Transport

Basic Idea: Bayesian Inference
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Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport

Basic Idea: Bayesian Inference

Bayes‘ law: 
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Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport

Basic Idea: Bayesian Inference

Bayes‘ law: 

We reconstruct a set of samples that approximate the posterior distribution

For more detail: arXiv:1901.11033
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A Model for the Gas Distributions

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport

❖ Key requirement: Spatial coherence
❖ Homogeneous (log)normal Gaussian random fields 𝑔( Ԧ𝑥):

❖ Generated e.g. by correlating random numbers
❖ Superimposed:

1) Radial profile: Milky Way is (roughly) axisymmetric
2) Z-profile: Milky Way is disk-shaped
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A Model for the Gas Distributions

❖ Key requirement: Spatial coherence
❖ Homogeneous (log)normal Gaussian random fields 𝑔( Ԧ𝑥):

❖ Generated e.g. by correlating random numbers
❖ Superimposed:

1) Radial profile: Milky Way is (roughly) axisymmetric
2) Z-profile: Milky Way is disk-shaped
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Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport
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A Model for the Gas Distributions

❖ Key requirement: Spatial coherence
❖ Homogeneous (log)normal Gaussian random fields 𝑔( Ԧ𝑥):

❖ Generated e.g. by correlating random numbers
❖ Superimposed:

1) Radial profile: Milky Way is (roughly) axisymmetric
2) Z-profile: Milky Way is disk-shaped

a.
u

. (
lo

g)

Model for gas densities: 𝜌( Ԧ𝑥) = 𝑓1 𝑟 ∙ 𝑓2 𝑧 ∙ 𝑒𝑔( Ԧ𝑥)

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport
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A Model for the Line-Of-Sight Velocity

❖ Need only line-of-sight component
❖ Rotation curve from Gaia DR3 analyses
❖ Additional information by 2 populations of tracers:

1) Masers
2) Young-Stellar-Objects clusters

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport
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A Model for the Line-Of-Sight Velocity

❖ Need only line-of-sight component
❖ Rotation curve from Gaia DR3 analyses
❖ Additional information by 2 populations of tracers:

1) Masers
2) Young-Stellar-Objects clusters

Rotation curve

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport

(Ou et al (2023))
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A Model for the Line-Of-Sight Velocity

❖ Need only line-of-sight component
❖ Rotation curve from Gaia DR3 analyses
❖ Additional information by 2 populations of tracers:

1) Masers
2) Young-Stellar-Objects clusters

(Ou et al (2023))

Rotation curve

Model for gas velocities:
𝑣LSR( Ԧ𝑥) = 𝑣circ( Ԧ𝑥) − 𝑣⊙ + 𝑔( Ԧ𝑥)

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport
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The Emission Line Spectra: HI and CO

Calculate synthetic data as line-of-sight integral:

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport
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The Emission Line Spectra: HI and CO

Calculate synthetic data as line-of-sight integral:

CO: J = 1 − 0 rotational transition: 2.6mm wavelength

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport

(Dame et al (2001 and 2022))
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The Emission Line Spectra: HI and CO

(HI4PI collaboration (2016))

Calculate synthetic data as line-of-sight integral:

CO: J = 1 − 0 rotational transition: 2.6mm wavelength HI: Fine structure transition: 21cm radiation

Line SpectraVelocity Model3D Gas Distributions
Bayesian Inference

Radiation Transport

(Dame et al (2001 and 2022))
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Results: Top-down view (global)

Previous reconstructions Updated model
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Results: Top-down view (global)

Previous reconstructions Updated model

Fewer artifacts

Strongly cored galactic centre
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Results: Top-down view (global)

Previous reconstructions Updated model

Fewer artifacts

Strongly cored galactic centre
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Results: Top-down view (global) – Sample Flipbook



Laurin Söding, RWTH Aachen, Spatially Coherent 3D 
Distributions of HI and CO in the Milky Way

25

Results: Top-down view (global) – Sample Flipbook
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Results: Top-down view (global) – Sample Flipbook
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Results: Top-down view (global) – Sample Flipbook
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Results: Top-down view (local)

Previous reconstructions Updated model

Much higher resolution

Detailed local substructures

Some obvious artifacts remain
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Results: A comparison to dust (local)

Updated gas vs. dust Updated model

(Edenhofer et al (2023))

Surprisingly good
match!

Using only implicit
local distance
information



Laurin Söding, RWTH Aachen, Spatially Coherent 3D 
Distributions of HI and CO in the Milky Way

30

Results: Sky-view Proton Column Density

Previous reconstructions Updated model

No sharp discontinuities

Detailed substructure

Tightly matches observed 
data
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Results: Sky-view Proton Column Density

Previous reconstructions Updated model

No sharp discontinuities

Detailed substructure

Tightly matches observed 
data
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Results: Sky-view Proton Column Density

Previous reconstructions Updated model

No sharp discontinuities

Detailed substructure

Tightly matches observed 
data
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Conclusions

Coherent picture of Milky Way gas distribution

Uncertainty estimation possible with multiple samples

High resolution near-by

Publication in preparation→ results available soon!
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Backup 1.1: Metric Gaussian Variational Inference

Infer these Approximate those

1. Guess a starting point for the mean
2. Draw samples from the approximated posterior 

distribution at the mean
3. Estimate “distance” to true posterior via Kullback-

Leibler-Divergence
4. Update mean estimation
5. Repeat

𝑝 ξ data) ∝  𝑝 data 𝜉) 𝑝(ξ)

Bayes’ theorem:

PriorLikelihoodPosterior



How to sample from the (approximated) Posterior?
→ Approximate Covariance by inverse Fisher metric

With Fisher metric of likelihood

Application of (inverse of) this scales linearly with model parameters due to implicit operators. 
There is no need to store the full covariance matrix at any point!

Infer these Approximate those

Backup 1.2: MGVI-Sampling: Inverse Fisher Metric as Covariance



How to optimise the estimate of the mean?

Infer these Approximate those
Evaluate Kullback-Leibler-Divergence stochastically:

And minimise w.r.t the mean parameters
gradients via autodifferentiation

Backup 1.3: MGVI: Optimising the Mean



Results 1: Verification of the Algorithm
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Ground truth Reconstruction

Backup 2: Verification of the Method
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